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Abstract 

We review some of the properties of the parafield operators and discuss in some detail 
where the difference between the ordinary and paraquantisation originates. Particular 
attention is paid to the many-vacuum representations of the para-Fermi operators. 

1. Introduction 

In this paper I would like to mention some properties o f  the parastatistics 
and in particular to draw the readers at tention to the very close connection 
between the representations of  the para-Fermi operators and the algebra of  
the orthogonal group. 

To begin with I must  mention that  parastatistics was introduced by  Green 
(1953) who observed that  the commonly accepted rules of  second quantisation, 
although sufficient, are not  necessary however for satisfying all physical 
requirements, and pointed out  how the quantisation axioms can be generalised. 
It is worth  considering here in more detail the question of  where the generalisa- 
t ion comes from. For  simplicity, let us consider the quantisation on an example 
o f  a real scalar free field ~(x).  

2. Classical Case 

One starts with the Lagrangian density 

£e = ½ ~.e(x) .  ~%(x) - ½m% ~ (x) (2.1) 
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The Lagrange-Euler equation in this case is the Klein-Gordon equation with 
positive and negative frequency solutions ~± (x)of  the form: 

1 f dr e*- " g,±(x) = ( 2 ~  X/(2k:°----~ ,nxp+_(~¢), t~ ° = X/(~ 2 + m 2) (2.2) 

Noether's theorem, together with the invariance of 'Sunder the Poincar6 
group ~ ,  gives the invariant quantities: the energy-momentum vector pn and 
the angular-momentum tensor M era. In particular, pn may be represented as 

Pn ½I= dppn +[~p (p),~p-(p)]+ (2.3) 

3. Quantisation of the Field 

The quantisation can be performed in different equivalent ways; for 
instance, by postulating the equal-time commutation relations. For what we 
want to show, however, it is more convenient to follow the quantisation 
procedure given by Bogoliubov & Shirkov (1959). It is based on the following 
postulates: 

(1) the field ~o(x) becomes an operator; 
(2) the energy-momentum vector P and the angular-momentum tensor M 

are expressed in terms of the operator-field functions by the same 
expressions of the type (2.3), i.e., as in the classical case, with proper 
ordering of the operator factors. 

It follows now from (1) and (2), together with the requirements that the 
field transforms according to a unitary representation of ~and  the compatibility 
of tile transformation properties of the field and the state vectors, that ~o(x) 
satisfies the commutation relation 

[e", ~-+(,,)1 = +-K%+-(~) (3.1)  

Inserting (2.3) and (3.1), we have 

[ [~0+(p), ~o-(p)]+, ~o +- (1¢)] = + 26 (p - ~c)~o+- (x) (3.2) 

Generalising this equation, Green has postulated the three-linear structure 
relation for the parafields 

[~o+(q), ~+(P)I+-, ~+(I¢)1 = 0 

[ [~+(q), ~0-(p)l~, ~ 0+- (g)] = + 26 (p - K)~o -+ (re) (3.3) 

where the anticommutator (commutator) corresponds to the para-Bose (para- 
Fermi) field. 

In the oridinary quantisation, one has to add two more postulates: 
(3) the commutator or the anticommutator of two-field operators is a C 

number; 
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(4) all dynamical variables should be written in a normal product form. 
From (3), it follows that 

[~o+(p), ~+(tc)]  = [ ~ - ( p ) ,  ~- (1¢)]  = 0 

and therefore the expression now corresponding to (3.2) is 

[: [~o+(p), , - (p) ]  :, ~±(x)] : 2 [~+(p)~-(p), ~±(K)] 

= 2 f i (p  - x)¢-+(1¢) ( 3 . 2 ' )  

Hence 

[~-(p), ~,+(,,)1 : 8 (p - ,¢) (3.3') 

and we obtain the Bose commutation relations. We see that the difference 
between the parastatistics and ordinary statistics is mainly due to postulate 
(3) which does not follow from some general physical requirements. However, 
the postulate greatly simplifies the practical calculations. So (modulo small 
details) we can conclude that the question of statistics depends mainly on 
whether the (anti) commutator of the fields is a C number (= ordinary 
statistics) or operator (= parastatistics). 

Since the moment the parastructure relations were introduced, they were 
studied by several authors from different points of view. The general conclu- 
sion was, that in the real world as least, the known particles appear to satisfy 
only the ordinary statistics. Only at present the situation seems to be changing. 
There are indications that parastatistics may be relevant in physics and its 
abstract mathematical structure may have applications in some branches of 
mathematics. As an example, let us consider the prequantisation methods of 
Konstant-Souriau (1970). We have heard how these authors, reformulating 
in a proper way the physical quantisation procedure, go a tong way towards 
constructing all irreducible unitary representations of connected Lie groups 
and, in particular, define all such representations for a large class of solvable 
groups. In this respect, it is interesting to ask whether the more general 
paraquantisation provides an extension of the prequantisation. 

From a physical point of view the interest in parastatistics is now stimulated 
a great deal by the circumstance that the elementary particles seem to be 
formed out of constituents as, for example, in the coloured quark model 
(Fritzsch & Gell-Mann, 1971). In this model, whose predictions are in reason- 
able agreement with experiment, the quarks seem to behave as para-Fermions 
of order 3, as first pointed out by Greenberg (1964). 

The order of the parastatistics is a concept which characterises a certain 
class of representations of the para-operators (PO), namely the Fock-type 
representations. One way to obtain a p-order representation is to express the 
para-operators in terms of another set o fp  operators, namely (Green, 1953) 

p 
•+-(p)= ~ :i±(p) (3.4) 

i=1 
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where the so-called Green ansatz ~i±(p) satisfy anomalous commutation 
relations: 

[~/±(P), ~/±(q)]e = 0 i 4=] 

[~pi-(p), ~i+(q)]-e = 6(p - q) 
i -  [~o (p), ~0i-(q)]_e = [~oi+(p), g)i+(q)]-e = 0 (3.5) 

The sign e = +( - )  corresponds to the para-Bose (para-Fermi) case. Let ~p be 
the Fock space of the Green ansatz with vacuum I 0 ). This space, in general, 
is reducible with respect to PO. The representation of  order p is realised in the 
irreducible subspace Wp C ~bp of  PO, which contains [ 0 ). The vector t 0) is 
the only state in Wp which is annihilated by ~-(p) and therefore these repre- 
sentations contain a unique vacuum state. All representations of this type 
were found and classified by Greenberg & Messiah (1965) and in the context 
we shall refer to them as canonical representations. The space ~p, however, 
contains also PO irreducible subspaces with more than one linearly indepen- 
dent state vanishing under the action of the annihilation operators ~-(p), i.e., 
in these subspaces the vacuum is degenerate. Previously such representations 
were rejected on the ground of the uniqueness of the vacuum. The concept 
of the vacuum, however, depends on the physical meaning ascribed to the 
operators involved. If one accepts the attitude that the elementary particles 
have no internal structure, then the vacuum should be the only state annihilated 
by ~0-(p), and hence one is forced to admit only canonical representations. On 
the other hand, if the particles are assumed to have internal structure, as for 
instance to be composed of quarks, it is quite natural to demand the vacuum 
to be unique with respect to the constituents. As an example let us assume 
that the field is of parastatistics 3. Then, one can write 

1 
~-+(x)=(27r)3/2 ~ f~po)e±iPx~Pi+-(P) 

i=1 
(3.6) 

and demand that the representation space contains only one state annihilated 
by the constituent annihilation operators ~0i-(p). This means that one has to 
consider as representation space the Fock space ¢3 of the Green ansatz. The 
space q~3 is irreducible with respect to ~0i-+(p) and, as we have already observed, 
contains several states annihilated by the field ~-(x). The vacuum is, however, 
unique. This point of view was first suggested by Govorkov (1968) and was 
properly realised in a recent paper of  Bracken & Green (1973). The former 
authors propose to consider generalised parastatistics of order p, which makes 
use of all representations of PO in Cp. The vectors from Cp, which are 
annihilated by ~0-(p), are called in this case reservoir or vacuum-like states. 

So we conclude that not only the canonical representations may be relevant 
for physical applications. Therefore, we proceed to study all representations 
of PO and, in particular, to analyse the properties of these representations 
with respect to the reservoir states. We shall, however, restrict our considera- 
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tions only to the case of para-Fermi operators (PFO). The reason for this is a 
purely technical one. It is due to the circumstance that to determine all PFO 
representations we make essential use of the underlying Lie algebraical 
structure of  the PFO, namely of the fact that every irreducible representation 
of n pairs of PFO can be extended to an irreducible representation of the 
classical Lie algebra Bn and vice versa. This allows us in the case of PFO 
to formulate the whole problem in a purely Lie algebraical language, whereas 
this seems to be impossible for the para-Bose case. 

For later use, we first consider a finite number ai, bi, i E N = (j I] = 1 . . . . .  n) 
of  n pairs of para-Fermi operators. The full set of relations they satisfy is the 
following: 

[ [ap, bq], at] = 28qrap 

[[ap, ha], b,.] = -2~prb  q 

[[bp, bq], at] = 2 ( S q r b  p - 6prbq ) 

[[ap, aq], br] = 2(Sqrap -- 6praq) 

[ [ap, aq], a,] = [ [bp, bq], br] = 0 (3.7) 

Let T be the associative free algebra of ai, bi, i E N,  and J be the two-sided 
ideal in T generated by the rdations (3.7). The factor algebra U = T/J is 
called para-Fermi algebra. It is an infinite dimensional Lie algebra with respect 
to the commutator [x, y]  = xy  - y x ,  x,  y E U. To find a representation of the 
PFO means to find a representation of the associative algebra U in some Hilbert 
(or, more generally, in some linear) space. Denote by Bn the subspace of all 
antisymmetrised second-order polynomials of PFO in U. From (3.7) one can 
easily see that Bn is a Lie subalgebra of the para-Fermi algebra and also that 
U is the universal enveloping algebra of  Bn. Thus the para-Fermi algebra 
coincides with the universal enveloping algebra of Bn. Since, by definition, 
a representation of  Bn is a homomorphism of U in an algebra of  operators in 
some Hilbert space, we conclude the following. 

Proposition 1. Every representation of the PFO is a representation of Bn. 
The representation of the para-Fermi operators is irreducible if and only if 
the representation of  Bn is irreducible. 

Thus the problem of constructing all representations of  PFO is reduced to 
a Lie algebraical one. Let us note that one is interested in considering not all 
representations but onty those for which the Hermitian conjugate of the 
annihilation operator ai equals bi. Therefore, one needs to determine all 
representations of  U considered as a *-algebra with involution defined by the 
condition (ai)* = bi ,  i E N. The set of all irreducible representations of the 
operators ai, bi, i E N is now completely determined from the observation that 
as a complex algebra Bn is isomorphic to the classical algebra denoted in the 
same way (Ryan & Sudarshan, 1963), whereas, as a real algebra, it is so(n, n + 1) 
(Palev, 1972). Moreover, the condition (ai)* = bi may be fulfilled only for the 
finite dimensional representations o f B  n which are known (Get'land & Zeithlin, 
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1950). It  is convenient to choose the basis in B n in the following way: 

[ai, bs] 
cos = 8n - 4 

eco i = as, e-co s = b i 

e~os+co ] = [ai, aj], e _ w  i_ooj = [hi, hi] 

eq.  _~o i = [as, b i] (3.8) 

The generators [ai, bi], i , j  E N ,  span a basis for a subatgebra of  Bn isomorphic 
to U(n).  In the following, when considering U(n),  we shall understand this 
particular realisation. The vectors f~ = (col . . . . .  COn) are orthogonal with re- 
spect to the Cartian-Killing form, namely 

8si (3.9) 
(co/, co/) = 4n - 2 

and can be taken as a basis of  th e Cartan subalgebra o f  Bn. In this case the 
root system ~ is given by the vectors 

= (-+cos ± coi, ---cos I i , / E J V )  (3.10) 

Hence the weights corresponding to ai(bi)  have positive first non-vanishing 
coordinate in ~2. Therefore, we obtain 

Proposition 2. The Cartan subalgebra of Bn can be chosen in such a way 
that all para-Fermi annihilation (creation) operators ai (hi), i E N ,  are positive 
(negative) root vectors. 

Let us turn now to the representations of PFO. Consider an irreducible 
representation realised in a space W and let xA be the highest weight of  the 
representation with weight 

n 

A=  ~ L i c o i - ( L  1 . . . .  , L n )  
i = n  

As is known, the coordinates of  A, which are all non-negative (half) integers 
such that L t >~" " ">t Ln,  define the representation o f  Bn and hence of PFO 
up to an isomorphism. A vector (ll ,  • • . ,  ln) is a weight if and on ly i f  it has 
(half) integer coordinates satisfying the inequality 

, [ l i ~ [ ~  L K ¥ i l - - / = i 2 4 : ' " ~ e i m E N ,  m = l  . . . . .  n 
t ~ = l  t ¢ = 1  (3.1 t) 
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Relation (3.9), together with the equality coi. XA = (A, wi)xi ,  gives that 
½ [ai, hi] x A = L i x A  so that Li  are the eigenvalues of  ½ [ai, bi] on the highest 
weight vector. 

Proposition 2 greatly simplifies the problem of  finding all reservoir states 
contained in W. We recall that  x @ W is said to be a reservoir state if 
a i . x = 0 ¥ i E N. Let P C U be the set o f  all polynomials of  the U(n)  generators. 
Denote by V C W the U(n)  representation space, which contains x a ,  namely 
V = ( p x A  I p ~ P ) .  

Proposition 3. The vector x E W is a reservoir state if  and only i f x  E V. 
The subspace V is the linear envelope of  all weight vectors with weights 
qa, . . ., In) such that  

n n 

li = ~ Li  (3.12) 
i = 1  i = 1  

Omitting the details o f  the proof  [see Palev (1973)] we observe that the 
weight vector xl with weight l ; (l 1 . . . . .  ln) satisfying (3.12) is necessarily 
annihilated by all ai since otherwise the corresponding weight to aixl  would 
violate the condition (3.11). It is also clear from the construction that V 
carries an irreduciable U(n)  representation. Consider now the important 
special case of  representation with highest weight A = (L, L . . . . .  L)  o f x a .  
Clearly, for i 4=] [ai, bl]xA is not a weight vector and therefore it is zero. 
Combining this with the formula for i = ] and taking into account that 
ai .xA = 0 ¥ i E N w e  obtain: 

aibj  .XA = 8ijPXA (3.13) 

where we have put p = 2L. 
It follows from (3.13) that V=PxA = x ^  and therefore we obtain in this 

case a representation with a single reservoir state, i.e., a canonical representa- 
tion of  PFO. In fact equation (3.13) is the defining relation for representation 
of  parastatistics p. So we see that the canonical representations of  PFO are 
kinds of  most degenerate representations o f B n .  The representation of n pairs 
of  usual Fermi operators corresponds, for instance, to a highest weight 
(½ . . . . .  ½). It is also easy to show that only the representations with 
L 1 . . . . .  L n contain a single reservoir state. 

Let us now examine in more detail the reservoir states in an irreducible 
representation of  a countable number ai, hi, i @ [ = ([ I f = 1, 2 . . . .  ) of  PFO. 
We define, as before, the para-Fermi algebra and the algebra B of all second- 
order antisymmetrised polynomials. In this case B is an infinite dimensional 
Lie algebra, and the para-Fermi algebra U(B) is its universal enveloping 
algebra in complete analogy with the finite case. The elements p E U(B)  are 
polynomials of  finite number of  PFO. 

Consider an irreducible representation of  the PFO in some Hilbert space W 
and let x o C W be a reservoir state, i.e., ai,  Xo = 0 ~ i @ I. From the irreduci- 
bility it follows that  the subspace U o -- (Pxolp  E U(B))  is dense in PC. Let 
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X t = poXo, POE U(B) be another reservoir state. Since Po is a polynomial of 
finite, say, n pard-Fermi operators, we can put without loss of generality that 
Po is a function of ai, bi, i E N. The representation of as, bi, i E N in W can in 
general be reducible. From the full reducibility of  the representations of Bn 
we have that Xo can be represented in a unique way as a sum Xo = ~a x~, where 
Xo ~ belongs to the Bn irreducible subspace W ~ of W, and the subspaces W c~ 
are linearly independent. Since ai . x ~  E W ~, i E N ,  ai .Xo = 0 implies that 
ai . x ~  = 0 ¥ a and i EN.  Hence x0 a is a Bn reservoir state. On the other hand 
aipoxo ~ E W ~, i E N and therefore aipoxo = 0 if and only i f  aipoxo ~ = 0 for 
all a and i EN. Applying now Proposition 3 we have that aipoxo ~ = O, i E N ,  
only in the case where po is a polynomial of  [ai, hi], i ,] E N .  On the other 
hand, let Po be a polynomial of [ai, hi], i, j E N. For K qi N [aK, [ai, b]] ] = 0 
and hence [aK, Po] = 0. Therefore, aKpOXO = poaKXo = 0 and poxo is a 
reservoir state. We have proved that for a given reservoir state Xo the vector 
poxo is also a reservoir state if and only i fpo  is a polynomial of [ai, hi], 
i,] E L The set of all such elements spans a basis of  an infinite dimensional 
Lie algebraA, which is a subalgebra of  B. Denote by U(A)  its universal 
enveloping algebra, U(A) C U(B). We have now that all reservoir states are 
contained in the subspace V C W, which is the closure of all vectors pxo, 
p E U(A).  The algebras B and A satisfy the commutation relations of the 
orthogonal and unitary algebras correspondingly, and therefore they can be 
considered as infinite dimensional analogue of the classical algebras Bn and 
An. The representation of A in V is an irreducible one. Indeed by construction, 
Xo is a cyclic vector of  A in V. Let x l  E U(A)xo.  Interchanging the places of  
xo andx l  in the above considerations, we find that there exists an operator 
p E U(B) such that xo = px  1. Moreover, since Xo and x 1 are reservoir states, 
p @ U(A)  and therefore U(A)  contains a projection operator on xo for any 
vector from a dense set in V. Repeating the same argument for Xo and any 
other vector x2 from the dense set in IT, we obtain that for any two vectors 
x 1, x2 from the dense set of  V, there exists an operator q E U(A)  such that 
x2 = qx l .  Hence the representation of A in V is irreducible. In fact, we have 
proved the Haag-Schroer (1962) lemma. So we have: 

Proposition 4. Any irreducible representation of the algebra B defines an 
irreducible representation of an infinite number ai, bi, i E I of PFO and vice 
versa. All reservoir states from the representation space W of PFO are con- 
tained in a subspace V C W which carries an irreducible representation of the 
algebra A. 

In conclusion, let me stress that the question whether parastatistics exists 
in nature depends mainly on whether the field (anti) commutators are C 
numbers. The requirement that the field (anti) commutators be C numbers 
does not follow from any general physical requirements. If  parastatistics 
exists, then the kind of representation of PO operators to be used depends on 
the physical meaning ascribed to these operators. It is worth mentioning that 
the extension to parastatistics preserves the essential properties of several of 
the field-theoretical models. For instance, one can easily verify that in any 
current algebra model the generalisation to parastatistics preserves the com- 
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mutation relations between the currents. This is due to the fact that the 
currents can always be expressed as functions of [ai, bi]e with e = +(-) for 
the Bose (Fermi) case (Adler & Dashen, 1968). It could be interesting to 
observe that the Bose and para-Fermi statistics can be viewed as quite similar 
mathematical structures. The Bose operators are generators of a solvable Lie 
algebra, the Heisenberg algebra, whereas the PFO are generators of the simple 
Lie algebra of the rotation group. In both cases, the dynamical variables are 
functions of Lie algebra generators. 
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